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ABSTRACT 

We show that, when A generates a C-semigroup, then there exists Y such 

that 

Jim(C)] "--* Y '--* X, 

and A[y, the restriction of A to Y, generates a strongly continuous semi- 
group, where ,--* means "is continuously embedded in" and [Izll[lm(o)] -- 
lic-lzl[. There also exists W such that 

[c(w)]  ~ x ,~ w, 

and an operator B such that A ~- B[x and B generates a strongly contin- 

uous semigroup on W. If the C-semigroup is exponentially bounded, then 

Y and W may be chosen to be Banach spaces; in general, Y and W are 

Frechet spaces. If p(A) is nonempty, the converse is also true. 

We construct fractional powers of generators of bounded C- 

semigroups. 

I. I n t r o d u c t i o n  

Motivated by the abs t rac t  Cauchy  problem, 

d (1.1) ~u(t,x) = A(u( t ,x ) )  (t >_ 0), ~(0, x) = x, 
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a generalization of strongly continuous semigroups, C-semigroups, has recently 

received much attention (see [9], [121, t141, [151, [161, [17], [18], [20], [21], [23], [32], 

[33], [35], [36], [371, [411, [431, [441, [451, [461, and [471). Generating a O-semigroup 
corresponds to (1.1) having a unique solution, whenever z = Cy, for some y in 

the domain of A. 

The class of operators that generate C-semigroups is much larger than the class 

of operators that generate strongly continuous semigroups. When C is chosen to 

be ( A - A ) - " ,  for some n E N, then i/k, on LP(Rk), for 1 _< p < oo,p # 2, may be 

shown to generate a C-semigroup, but not a strongly continuous semigroup (see 

[24] and [15]). This yields solutions of the SchrSdinger equation, for all initial 

data in the domain of A-+I. Much "worse" operators, corresponding to what 

are traditionally referred to as ill posed or improperly posed problems, generate 

C-semigroups. For example, if A - - /k ,  so that (1.1) becomes the backwards 

heat equation, then A generates a C-semigroup. If 

so that (1.1) becomes the Cauchy problem for the Laplace equation, then A 

generates a O-semigroup (see [161). 

When Ira(O) is dense, as is the case in the examples above, then (1.1) has 

a unique solution for all x in a dense set. Thus, O-semigroups have been used 

extensively to produce unique solutions for all initial data in a dense set. The 

question of whether the solutions were well-posed, in some sense, remained. The 

usual definition of (1.1) being well-posed is when A generates a strongly contin- 

uous semigroup (see [221, chapter 2.1). 

In this paper, we show that, when A generates a C-sere[group, then there exists 

an "interpolation space" Y such that 

[Ira(C)] "--* Y ~ X, 

and Aly , the restriction of A to Y, generates a strongly continuous semigroup. If 

the C-semigroup is exponentially bounded, then Y may be chosen to be a Banach 

space; in general, Y is a Frechet space. If p(A) is nonempty, the converse is also 

true. The exponentially bounded case of this result may be found in [37]. 

We show that the interpolating space Y contains all initial data for which (1.1) 

has a solution. 
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We also show that there exists an "extrapolation space" W such that 

It(W)] x w, 

and an operator B such that A = B[x and B generates a strongly continuous 

semigroup on W. 

The norm on the interpolation space Y is [[z[]y ~ sup{[[C-1W(t)z[[[t > 0}, 

while the norm on the extrapolation space W is [[z[lw = sup{HW(t)z][]t >_ 0}. 

This paper shows that, in a technical sense, at least if one is willing to make 

renormings, the concepts of C-semigroup and strongly continuous semigroup are 

the same. But there are important practical differences. A C-semigroup is often 

very easy to produce and construct, and one does not have to leave the original 

norm, which may be very simple or physically meaningful. The interpolation 

space, on which the restriction of A generates a strongly continuous semigroup, 

may be very difficult to construct, with a norm that is unpleasant or impossible 

to work with. In [13], [14], [15], [16], [17], [18], [21] and [41], there are numerous 

examples of C-semigroups that are constructed in the most simple-minded and 

intuitive manners. 

Even if one's only goal is to find subspaces, Y, on which the restriction of 

A, Air , generates a strongly continuous semigroup, we submit the following al- 

gorithm. First find a C-semigroup generated by A. Then use the construction of 

this paper (Theorems 3.1 and 3.8) to produce Y. 

This paper makes it clear how C-semigroups may be used, first, to characterize 

all initial data that yield a solution of (1.1) (see Proposition 2.6), then, in the 

construction of the interpolating space Y, to find a norm with respect to which 

those solutions are well-posed. 

This paper also shows the relationship between general C-semigroups and ex- 

ponentially bounded C-semigroups. It is the same as the relationship between 

Frechet spaces and Banach spaces, that is, A generating a C-semigroup corre- 

sponds to a restriction of A to a Frechet space generating a strongly continuous 

semigroup, while generating an exponentially bounded C-semigroup corresponds 

to a restriction to a Banach space generating a strongly continuous semigroup. 

More specifically, generating a C-semigroup corresponds to an interpolating space 

Y with the topology of uniform convergence on compact subsets of [0, co), while 

generating a bounded strongly uniformly continuous C-semigroup corresponds to 

Y having the topology of uniform convergence on [0, ~ )  (see the construction of 

Y in Theorems 3.1 and 3.8). 
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We present preliminary material on C-semigroups in section II. Our main the- 

orems are in section III. We give examples in section IV. In section V, we give an 

example of how section III may be used to translate strongly continuous semi- 

group results to analogous results for C-semigroups, by constructing fractional 

powers of generators of bounded, strongly uniformly continuous C-semigroups. 

Section VI considers holomorphic C-semigroups and section VII uses section III 

to obtain perturbation results for C-semigroups (see also [47]). 

All operators are linear. We will write D(A) for the domain of A, p(A) for the 

resolvent set. X will always be a Banach space. Y, in general, will be a Freehet 

space. C will always be a bounded, injective operator. If A is an operator on X 

and Y C X, then AIr is the part of A in Y, that is, 

D(AIv) - {x �9 Y n D(A)[ Az �9 Y}, 

with A[yz = Az. We will write {etA}t>o to mean a strongly continuous semi- 

group generated by A. When W is a Banach space, we will denote by [C(W)] 

the Banach space with norm [Izi][v(w)] _ [[C-lz[[w; when W is a Frechet space 

whose topology is generated by the seminorms {[[ [[,}i=,, then [C(W)] will be a 

Frechet space whose topology is generated by the seminorms [Ix[li,r = [[C-lz[[i 

(1 < i < oo). C(X) will also be denoted by Ira(C). We will denote by [D(A)] 

the Banach space with the graph norm ][z[][D(A)] = [[z[] + [[AzII. L(X,Y)  will be 

the space of continuous, linear operators from X into Y; L(Y) will mean L(Y, Y). 
By a solut ion of (1.1) we mean u �9 C ([0, co), [D(A)]) n C 1 ([0, co), X), satis- 

fying (1.1). By a mild solution we mean u �9 C ([0, co), X) such that f :  u(s)ds �9 
D( A), Vt > O, satisfying 

(/0') u(t) = A u(s) ds + x, 

Vt _> 0. We will write Y ~ X to mean that Y is continuously embedded in X, 

that is, Y C_ X and the identity map from Y to X is continuous. 

II.  Prel iminar ies  

Det]nition 2.1: The strongly continuous family of bounded operators 

{W(t)}t>o, on a Banach space X, is a C-semigroup if W(O) = C and 

= c w ( t  + w ,  t > o. I 
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The genera to r  of {W(t)}t>o is defined by 

D(A) -_- {z E Xllimit exists and is in Im(C)}. 

Note that when C = I, this is the definition of a strongly continuous semigroup 

generated by A. Intuitively, W(t) = Ce t A =  etAC. This intuition is realized 

precisely in section III. 

Detinition 2.2.: The strongly continuous family of bounded operators 

{T(t)}t>o, on a locally convex space Y, is a locally equicont inuous semi- 

group if T(O) = I, T(t)T(s) = T(s + t),Vs, t > 0 and Vs < oo, {T(t)l 0 < t < s} 

is equicontinuous. I 

The generator is defined exactly as in Definition 2.1, with C = I. 

Proposi t ion 2.3 (see [14]): Suppose A generates a C-semigroup {W(t)}t>o. 

Then 

(a) A is dosed. 

(b) W(t)A c_ AW(t),Vt > O. 

(e) ~W(t )z  exists and equals W(t)Az,  Vt > O, z E D(A). 

(d) f t W ( s ) z d s  E D(A), with A ( f t W ( s ) z d s )  = W ( t ) x - C z , V t  > 0, z E 

X.  

(e) (1.1) has a unique solution, Vx ~ C (D(A)), given by u(t, z) = W( t )C- l z .  

(f) (1.1) has ~ unique mild so~ution, V~ e Zm(C), gives by ~(t,~) = 

W(t)C-lz. 

Even when {W(t)}t>0 is exponentially bounded, p(A) may be empty. 

When {W(t)}t>_o is exponentially bounded, the following is in [32], where the 

operator, G, is introduced. 

PROPOSITION 2.4: Suppose { W ( t ) }t>_o is a C-semigroup generated by an exten- 

sion of A, CA C_ AC and V w  = {z E Im(C)l t  ~ C-1W(t)z is  differentiable at 

t = 0} C_ D(A). Then C-1AC generates {W(t)}t>o. 

PROPOSITION 2.5 (see [16], Proposition 2.9): Suppose an extension of A gener- 

ates a C-semigroup and p( A ) is nonempty. Then A is the generator. 



232 R. DELAUBENFELS Isr. J. Math.  

PROPOSITION 2.6: Suppose A generates a C-sernigroup {W(t)},>_0. Then (1.1) 

has a solution i f  and only i f  t ~* C -1W ( t )z e C ([0, oo), [D(A)]) n C 1 ([0, oo), X). 

The solution is then u(t, x) -- C-1W(t)x.  

PROPOSITION 2.7: Suppose A generates a C-sernlgroup {W(t))t>0. Then (1.1) 

has a mild solution if and only if t ~ C-~W(t)~ �9 C([O, oo),X) ~ d  
]0 c-'w(~)x d~ �9 D(A), Vt >_ O. The ~olution is then ,,(t, ~) = C-IW(t)~. 

Note that (1.1) has a mild solution whenever z �9 Ira(C). The "smoothed" 

solutions C(u(t, x)) are then well-posed, in the sense that C(u(t, x,)) converges 

to zero, uniformly on compact sets, whenever xn ~ 0. In section III, we will see 

that, on a subspace, Y, that contains Im(C), the solutions themselves are well- 

posed, that is, A[~, generates a strongly continuously semigroup, so that u(t, x , )  

converges to zero in Y, uniformly on compact sets, whenever xn --* 0, in Y. 

Proof of Proposition 2.4: Let .4 be the generator of {W(t))t>0 and let G = A, 

restricted to 2)w. Then it is straightforward to see that C-1GC = A. Thus 

= C-1GC c C-1AC. 

For the opposite inclusion, another straightforward calculation shows that 

C-1AC is the generator of the C2-semigroup {CW(t)}t>o. The following ar- 

gument shows that A = C-1AC. 

It is clear that .4 C_ C-1AC. Suppose x �9 D(C-~AC). Then, Vt >_ 0, by 

Proposition 2.3, 

~ t c (w( t ) .  - c . )  = cw(~)c  -1~c~ d~ 

= C ( f '  W(~)C-' ~Cx ds) ; 

since C is injective, this implies that 

(w(t)x - cx )  = f0' W(s)C -1 ~Cx ds, 

which implies that x E D(.4), with Ax = C-I.~Cx, as desired. 

Thus C-1AC C_ C-1AC = .4, so that A = C-1AC. 1 

Proof o[ Proposition 2.6: When 

v(t) = C -1W(t)x �9 C ([0, oo), [D(A)]) N C1 ([0, oo), X) ,  
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then by Proposition 2.3(b) and (c), 

C- v(t) = - Cv(t) = Acv(t) = cA,,(t), vt o, 

so that,  since C is injective, (1.1) has the solution u(t, x) = C-1W(t)z. 

Conversely, if (1.1) has a solution v, then, by Proposition 2.3(e), since Cv(O) E 
C(D(A)), Cv(t) = W(t)C-1Cv(O) = W(t)x. | 

Proof of Proposition 2.7: When v(t) = C-1W(t)x has the desired properties, 

then by Proposition 2.3(b) and (d), 

CA (fo'V(s)ds ) = A (fotCv(s)ds ) = C(v( t ) ) -Cx ,  

so that,  since C is injective, v is the desired solution. The converse is exactly as 

in the previous proof, using Proposition 2.3(f). | 

III. Main Theorems 

Our main results are in Theorems 3.16 and 3.17. The construction of the inter- 

polating space Y, on which AIr generates a strongly continuous semigroup, is in 

Theorem 3.8. In all our results, D(A) may not be dense and p(A) may be empty. 

We will say that a C-semigroup {W(t)}t>0 is strongly uniformly contin- 

uous if, for all z E X, the map t ~ W(t)z , from [0, co) into X, is uniformly 

continuous (see Remark 3.6). 

It is clear how Theorems 3.1 and 3.16 may be extended to exponentially 

bounded C-semigroups. 

Assertions (1), (2) and (5) of the following proposition are essentially in [37], 

Theorem 1, with the same construction. Our result is somewhat sharper, in that 

the rate of growth of the C- semigroup matches the rate of growth of the strongly 

continuous sernigroup. 

PROPOSITION 3.1: Suppose A generates a strongly uniformly continuous bou- 

nded C-semigroup, {W(t)}t_>0. Then 3 a Banach space Y such that 

(1) AIr generates a strongly continuous contraction semigroup, 

(2) [C(X)] ~ Y ~ X,  

(3) Y contains all initial data for which (1.1) has a bounded uniformly con- 

tinuous mild solution, with 

(4) u( t ,x)  = etAIrx and 

(5) w(t )  = ~,AlY C, Vt >_ o. 
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Y may be chosen to be 

{z E X] t ~ C-1W(t)z  is a uniformly continuous map 

from [0, e~) into X and Ilzllr < oo}, 

where IlxllY = sup{llC-aW(t)xlllt ~ 0}. 

COROLLARY 3.2: Suppose A generates a strongly uniformly continuous bounded 

C-semigroup {W(t)}t>_o. Then 3 a Banach space W and an operator B such that 

(1) C extends to a bounded operator, C, on W, 

(2) B generates a strongly continuous contraction semigroup on W, such that 
ete~ = ~ete,Vt > O, 

(3) Ce'% = w(t)~,v t  >_ o, �9 e x ,  

(4 )  A = BIx and 

(5) [~ (w) ]  ~ x ,-,  w .  

W may be chosen so that 

Ilxllw = sup{llW(0xll lt  ~ 0}, vx e x .  

Remark 3.3: Theorem 0.2, in [2], has a result similar to Corollary 3.2, for expo- 

nentially bounded n-times integrated semigroups of type w > 0 (B generates an 

exponentially bounded n-times integrated semigroup of type w > 0 if and only if 

(w, oo) C_ p(B) and B generates an exponentially bounded (), - B)-"-semigroup,  

VA > w; see [15]). By choosing C = (,~ - A) -" ,  Theorem 0.2, in [21, is a corollary 

of Corollary 3.2. II 

Another construction of interpolation spaces, for a class of operators related 

to integrated semigroups, appears in [40]. 

Remark 3.4: In [27], an interpolating space, Z, defined to be the H i l l e - Y o s i d a  

space,  is constructed, for an arbitrary operator, A, so that A[z generates a 

strongly continuous contraction semigroup. When A generates a bounded C- 

semigroup, then it may be shown that C (D(A)) C_ Z; however, even when D(A) 

is dense, it is not clear if Ira(C) C_ Z. | 

Remark 3.5: In [12], section 6, it is stated that the construction in [34] may be 

used to construct an interpolating space Y satisfying (1) and (2) of Theorem 3.1, 
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when Ira(C) is dense and A generates an exponentially bounded C-semigroup. 

However, the construction there required that (A - A) -1 leave Ira(C) invariant; 

the following example shows that this is not true, in general. Let 

[00 Co'] A =- , D(A) = X • Ira(C). 

Then A generates the exponentially bounded C-semigroup 

and 
(. '~-A) - 1  = ~ 1 

0 

with the same domain as A, VA r O, which clearly does not leave Ira(C) x Ira(C) 

invariant. | 

Remark 3.6: If A, in Theorem 3.1, is densely defined and {W(t)}t>0 is bounded, 

then {W(t)},>0 is strongly uniformly continuous. The same is true if {W(t)}t>0 

is stable. It is not clear if all bounded C-semigroups are strongly uniformly 

continuous. If qY as in (1) and (2) of Theorem 3.1, then {W(t)}t>0 is strongly 

uniformly continuous (see Proposition 3.11). | 

Remark 3.7: Note that, in Theorem 3.1, Y does not contain all initial data for 

which (1.1) has a solution, in fact, the following example shows that, in general, 

there will exist no Banach space satisfying (2), (3) and (4), with AIy generating 

a strongly continuous semigroup, that will contain all such initial data. 

Let 

d D(A) = { f  E X If '  E X} .  X - C ~  NCl([o'~176 A=- dx' 

Then A generates a bounded strongly uniformly continuous ( 1 -  A)-l-semigroup, 

defined by 

W(t) f (x)  =__ ((1 - A)- '  f )  (x - t). 

If Y were as in Theorem 3.1 and u were defined by (4), then u would be exponen- 

tially bounded. However, there are solutions of (1.1) that are not exponentially 

bounded. Choose f E D(A) such that, Vk E N, 

k - i < �9 < k} _> 



236 

Then 

is a solution of (1.1) and 

R. DELAUBENFELS 

u(t, f ) (x )  -~ f (x  - t) 

t 2 
I lu( t , f ) l l  >_ e , v t  > o. 

Isr. J. Math. 

Hence, to obtain an interpolating space containing all initial data for which 

(1.1) has a mild solution, we must let Y be a Frechet space. II 

THEOREM 3.8: Suppose A generates a C-semigroup {W(t)}t>o. Then 3 a 

Frechet space Y such that 

(1) 

(2) 

(3) 

(4) 

(5) w(t )  = dal ,C,  Vt >__ o. 

Y may be chosen to be 

AIr generates a locedly equicontinuous semigroup, 

[C(X)] ~ Y ,--, X, 

Y contains edl initial data for which (1.1) has a mild solution, with 

u(t ,x)  = etAIrx and 

{~ e x l t  ~ c - a w ( t ) ~  is a continuous map from [0, oo) into X} ,  

with the topology of Y generated by the seminorms 

I1~11~,~ = sup{] lc- 'w(t)xLllt  e [r/,ri]}, 

�9 o o  where {r,}i=l is a denumeration of the nonnegative rational numbers. 

COROLLARY 3.9: Suppose A generates a C-semigroup {W(t)}t>0. Then 3 a 

Frechet space W and an operator B such that 

(1) C extends to a bounded operator, C, on W, 

(2) B generates a locally equicontinuous semigroup on W, such that ctB C = 

OetB,Vt > O, 

(3) CetBz = W(t )z ,Vt  > O, z E X ,  

(4) A = Blx  and 

(5) [~(w)]  ~ x ~ w .  
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W may be chosen to have topology generated by the seminorms 

II~ll~,j = sup(llW(Oxlll* �9 [",,"A), vx �9 x ,  

�9 O O  where {r,}i= 1 is a denumeration of the nonnegative rational numbers. 

Remark 3.10: The construction of Theorem 3.8 could also be done when A 

generates a semigroup of unbounded operators, {T(t)}t_>0, as in [26]. If 

V = ( z  �9 N D(T(t)T(s))[t ~ T(t)x is continuous, 
L s,t>O 

% ,  

T(Of(~)x = f (s  + Ox,Vs, t > 0 l ,  

as in [26], then one would obtain a Frechet space, Y, containing 2), such that 

{T(t)[v}t>o is a locally equicontinuous semigroup. Since :D does not have a topol- 

ogy, one would have less information about the topology of Y, than is contained 

in Theorem 3.8. Also, it is not clear what the relationship between the generator 

of {T(t)[y}t>_o and A]y is, where A is the generator of {T(t)}t>0, as defined in 

[26]. i 

In Propositions 3.11, 3.12, 3.14 and 3.15, note that, when p(A) is nonempty, 

then A itself is the generator, by Proposition 2.5. 

PROPOSITION 3.11: Suppose CA C AC and 3 a Banach space Y such that 

[C(X)] '-+ Y "-+ X 

and A[y generates a strongly continuous contraction semigroup. Then an ex- 

tension of A generates a bounded strongly uniformly continuous C-semigroup on 

X.  

PROPOSITION 3.12: Suppose 3 a Banach space W, a bounded extension, C, of 

C, on W and an operator B such that 

[~(w)] ,-, x ~ w, 

B generates a strongly continuous contraction semigroup on W, etBc = Ce tB, 

Vt >_ 0 and A = B[x. Then an extension of A, C-1AC, generates a bounded 

strongly uniformly continuous C-semigroup on X.  
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Remark 3.13: By choosing C - (A - B) -k, and using Proposition 2.5 and the 

equivalence between generating a k-times integrated semigroup and generating 

a (A - B)-k-semigroup (see Remark 3.3), Theorem 0.1, in [2], is a Corollary of 

Proposition 3.12. | 

PROPOSITION 3.14: Suppose CA C_ AC and 3 a F}echet space Y such that 

[c(x)] ~ Y ~ x 

and A[y generates a locally equicontinuous semigroup. Then an extension of A 

generates a C-semlgroup on X. 

PROPOSITION 3.15: Suppose 3 a F~echet space W, a bounded extension, 6~, of 

C, to W and an operator B such that 

[O(W)l ~ x ~ w,  

B generates a locally equiconthauous semigroup on W, e'BC = Ce 'B and A = 

B[x. Then an extension of A, C-1AC, generates a C-semigroup on X.  

The equivalence of (a) and (b) in the following theorem is in [37], Theorem 1. 

THEOREM 3.16: The following are equivalent. 

(a) A generates a bounded strongly uniforraly continuous C-semigroup. 

(b) A = C-1AC and 3 a Banach space Y such that 

IV(X)] ~ Y ~ x, 

and Aly generates a strongly continuous contraction semigroup. 

(e) q a Banach space W and an operator B such that B generates a strongly 

continuous contraction semigroup on W, C extends to a bounded opera- 

tor, 6', on W, etB6 ' = CetB,Vt > O, 

[~(w)]  ~ x ~ w, 

and A = B[x. 
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THEOREM 3.17: The following are equivalent. 

(a) A generates a C-semigroup. 

(b) A = C-1AC and 3 a Frechet space Y such that 

[ c ( x ) l  ~ Y ~ x, 

and AIy generates a locally equicontinuous semigroup. 

(c) 3 a Frechet space W and an operator B such that B generates a locally 

equicontinuous semigroup on W, C extends to a bounded operator C, on 

W, etBC = Ce'B,Vt > O, 

[~(w)] ~ x ~ w, 

and A = B[x. 

The following improves Corollary 0.3, in [2], by removing the hypothesis that 

D(A) be dense. The equivalence of (a) and (b) is in [37], Coronary 2. 

COROLLARY 3.18: Suppose p(A) is nonempty. Then the following are equiva- 

lent. 

(a) A generates an exponentiedly bounded n-times integrated semigroup. 

(b) 3 a Banach space Y such that AIy generates a strongly continuous semi- 

group and 

[D(A")] ~ r ~ x .  

(c) 3 a Banach space W and an operator B such that B generates a strongly 

continuous semigroup on W, 

[D(B")] ~ X ~ W, 

and A = B[x .  

For Lemma 3.19 and Corollary 3.20, assume {W(t)}t_>0 is a C-semigroup. 

LEM~A 3.19: g W ( 0 ~  e Zm(C), then W(s)C-1W(t)~ = W(s + t)~, W > O. 

Proof: C [W(s)C- 'W(t)z]  = W(s)CC-1W(t)z  = W(s)W(t)z  = CW(s + t)x, 

thus this follows from the fact that C is injective. 
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COROLLARY 3.20: I f W ( t ) x  E Im(C),Vt  > O, then W(s )C-1W( t ) x  E Ira(C), 

Vs, t > O. 

Proof of Proposition 3.1: Assertions (1) and (2) follow as in the proof of Theorem 

1, in [37], with e 'AIY = C-~W(t) .  (3) and (4) follow from Proposition 2.7. 

(5) follows from the fact that C is injective and CW(t)  = W(t )O = CetAIrC. 
| 

Proof of Corollary 3.2: Let Z be the completion of X, with respect to the norm 

IIx[Iz =_- tlCz]l. Extend C to Z by defining Cz = limn--.oo Cx, ,  with the limit 

taken in X,  whenever {xn}n~176 is a sequence in X converging to z, in Z. It is not 

hard to see that C' is bounded and injective on Z, and ~'(Z) equals the closure, 

in X, of C(X).  For any t > 0, extend W(t)  to Z by W(t)z  - C-1W(t)Cz;  note 

that, since W(t)  is bounded and commutes with C, W(t )Cz  E C(Z),Vz E Z. 

W is now constructed from Z exactly as Y was constructed from X, in Theorem 

3.1. Note that 

Ilxllw ~ sup I I ~ - a w ( t ) x l l z  = sup IIW(t)xll. 
t_>o t>_o 

Thus X C_ W and (5) is clear. 

B =_ Al lw,  where A1 is the generator of the extension of {W(t)}t>0 to Z; by 

Theorem 3.1, B generates a strongly continuous contraction semigroup on W. 

To see that A = BIx,  suppose x E D(BIx) .  Then, Vt > 0, 

l ( w ( t ) z - O z ) = C ( l ( e ' B z - z ) )  

which converges to c n x ,  as t --, 0, in X,  because [r ~ X. Thus x e D(A) 

and Ax = Bz,  so that Blx C_ A. Conversely, suppose z E D(A). Then, Vt > O, 

i' ( I ' )  CetBz - Cz = W( t ) z  - Cx = W(s)Ax  ds = C e 'eAx  ds , 

so that,  since C is injective, 

i' e t B x  - -  X = eSBAx ds, 

which implies that x E D(B) and Bx = Ax E X,  so that x E D(BIx) ,  as desired. 

| 
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Proof of  Theorem 3.8." Y is a locally convex space generated by a countable 

family of seminorms, thus to show that Y is a Frechet space, it is sufficient to 

show that Y is complete. 

Suppose {y,} is a Cauchy sequence in Y. Since W(0) --- C, it is clear that 

3z E X such that y ,  ~ x, i n X .  F i x i  a n d j .  For t E [r~,rj], 3z(t)  E X 

such that C - 1 W ( t ) y ,  converges to z(t),  and W(t)yn  converges to W(t )x ,  in 

X, both uniformly on [ri, rj]. Since C is bounded, Cz(t)  = W ( t ) z ,  so that 

W ( t ) x  �9 Im(C),Vt .  �9 [ri, rj]. The continuity of t ~ C - 1 W ( t ) x  = z(t),  and the 

fact that [[y, - x[[i,/converges to 0, both follow from the uniform convergence 

of C - 1 W ( t ) y , .  Since i and j were arbitrary, x �9 Y and y ,  converges to x, in Y. 

By Lemma 3.19 and Corollary 3.20, 

T(s) =_ C-'W(s) 

maps Y into itself, Vs _> 0. By Lemma 3.19, for s >_ O,i, j  E N , x  E Y ,  

IIT(s)xll~,~ = sup{llC-aW(Oxlllt e [n + s, ri +8]} < II~llk,t, 

when rk < ri + s and rt > rj + s. Thus T(s)  E L(Y) .  The strong continuity of 

{T(s)}s_>0 follows from the fact that s ~-* C - 1 W ( s ) x ,  from [ri,rj] into X, is con- 

tinuous, hence uniformly continuous, for any x E Y, i, j E N. Since Y is a Frechet 

space, the strong continuity implies that {T(t))t>o is locally equicontinuous (see 

[28]). 
Let .4 be the generator of {T(s)},_>0. If x e D(.4), then Vs > 0, 

which converges to C.4x, as s -~ O. Thus x E D(A),  with Ax = .4x E Y. 

This is saying that .4 ___ Aiy. To see that AiY C_ A, suppose x E D(A]y) .  

Then it is not hard to see that C E L(Y) ,  thus, since 

/0' ( / o ' )  C T ( t ) z  - C z  = W ( t ) x  - C z  = W ( s ) A x  ds = C T ( s ) A z  ds , 

and C is injective, it follows that 

~o t T(t )x  - x = T( s )Ax  ds, 
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Vt > 0, so that x �9 D(.4) and .4 -- AIr , as desired. 

It is clear that Y ~ X, by choosing ri = 0,r i > 0. If x = Cz �9 Ira(C), then 

t ~ C-1W(t)x is continuous and Vi,j �9 N, 

[IX[li,j <~ (sup{[lW(~)][[t �9 [r i , r j ]})[[C-Ix[f ,  

thus Im(C) ~ Y.  | 

Proof of Corollary 3.9: This follows from Theorem 3.8 exactly as Corollary 3.2 

followed from Theorem 3.1. | 

Proof of Propositions 3.11 and 3.14: Let W(t) ~- e:A[vC. Strong uniform 

continuity follows from the fact that Im(C) C_ Y and Y ~ X. It is not hard 

to show that, since CA C_ AC, C leaves Y invariant and commutes with e :Air. 

This implies that W(t)W(s) = W(t  + s)C, Vs, t >_ 0. 

Thus {W(t)}:>_0 is a C-semigroup. Let .4 he the generator of {W(t)}t>_0. Note 

that, Vy �9 D(A), W(Oy is the unique solution of (1.1), with x = Cy, since 

C(D(A)) C_ D(AIy ). Thus, ~W(t)xl:=o exists and equals ACy = CAy, so that 

y E D(.4) and Ay = Ay, that is, ), is an extension of A. @ 

Proof of Propositions 3.12 and 3.15: For x 6 X, let W(t)x = Ce'Bz. Bound- 

edaess and strong uniform continuity follows from the fact that [C(W)] ~ X. 

Since 0e  :B = etB0, {W(t)}:>_0 is a C-semigroup. 

Let ,4 be the generator of {W(t)}:_>0 and suppose x 6 D(A). Since x 6 D(B) 

and [C(W)] ~-* X, W(t)x is differentiable, with ~W(t)x[:=0 = CBz  = CAx. 

Thus x E D(.4), with .4x = Ax, so that an extension of A generates {W(t)}:>0. 

Since X ~ W, V w  C_ Im(C)ND(B]x) .  Thus, by Proposition 2.4, ,4 = C-1AC. 
| 

Proof of Theorem 3.16: This follows from Theorem 3.1 and Propositions 3.11, 

3.12 and 2.4. | 

Proof of Theorem 3.17: This follows from Theorem 3.8 and Propositions 3.14, 

3.15 and 2.4. | 

Proof of Corollary 3.18: By translating A if necessary, we may assume that all 

semigroups, integrated semigroups and C-semigroups are exponentially decaying, 

hence strongly uniformly continuous. 
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Corollary 3.18 now follows from Theorem 3.16 and the fact that A generates 

an exponentially bounded n-times integrated semigroup if and only if 3w > 0 

such that (w, oo) C_ p(A) and A generates an exponentially bounded (r - A)-"- 
semigroup, Vr > w (see [151). t 

IV. Examples 

We restrict ourselves here to examples simple enough so that C-1W(t) may be 

calculated, to illustrate the construction of the interpolating space Y. Other 

examples, where {W(t)}t>o is constructed explicitly, but C -~ W(t) might be less 

obvious, may be found in [15], [16], [17] and [18]. 

Let X = C0([0, oo)),Af(x) =_ xf(x), then A generates the C- Example 4. I: 

semigroup 

w ( t ) f ( ~ )  - ~-~'~'V(~) ,  

where C = W(0). Then Y, from Theorem 3.7, is {f  6 XIz  ~ et~f(z) 6 X, Vt > 
0}, with topology generated by the seminorms 

I l f l l i , i  = sup{let~f(x)l[ x �9 R , t  �9 [ri,rj]}, 

and etAly f (x)  = etZf(x),Vf E Y,g ~ O. 

It is clear how to extend this construction to arbitrary multiplication operators, 

A. Our space Y is similar to a construction in [7], [8], where a Cauchy problem 

in population genetics is considered. | 

For Examples 4.2 through 4.4, we will write f(D), where 

for the operator 

, ~ X 2 , ' ' ' ,  

f ( D ) g  = ( ~ : - l f ) ,  g, 

with domain equal to the Schwartz space of rapidly decreasing functions, where 

9 r is the k dimensional Fourier transform, defined on the space of tempered 

distributions, f and g are tempered distributions and * is convolution. 
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Example 4.2 : Let A - iA, on LP(R k) (1 < p < oo), the closure of -ilDI 2. For 

appropriate n, it is shown in [24] and [1] that A generates an n-times integrated 

semigroup; this implies(see [15]) that A generates a bounded, strongly uniformly 

continuous (1 - A)-n-semigroup, given by 

W(t)  =- (f thn)(D),  where f t (x)  =-- e -itlzl2, ha(z) - (1 + ilz[2) -".  

Here Y, of Theorem 3.1, would be 

{g[ t ~ s  is a bounded, strongly uniformly continuous map from [0, co) into 

LP(I~)}, with Ilgllv - sup{ll.f,(D)glllt > 0}. | 

Example 4.3: Let A =- - A ,  on LP(Rk)(1 <_ p < co), the closure of ID21. The 

operator A generates an e-ZX~-semigroup, given by 

W(t)  =- (g,h)(D), where g,(z) -'- e tl'l', h(z) - e -I'1". 

This is shown in [16], for k = 1; the same construction may be used for arbitrary 

k. It would seem natural to construct Y, from Theorem 3.7, analogously to the 

previous example; the difficulty is that gt is not a tempered distribution, thus 

gt(D) may not be defined. 

For p = 2, one may use the fact that the Fourier transform is a unitary map, 

to show that 

Y = {f �9 L2(Rk)lt ~ gt.Tz-'fis a continuous map from [0, co)into L2(Rk)}, 

with topology generated by the seminorms 

Ilfll~,i - sup{ l lg ,2 - - 'Yl l21 t  e [ r ,  rA}.  

For general p, if f~ is a bounded subset of p,k with smooth boundary, then 

A = - A ,  on LP(ft), with D(A) = W2'P(ft)1")W01'P(f~), also generates an e -a~- 

semigroup. Here we do not have the Fourier transform; the C-semigroup gener- 

ated by A is defined with an unbounded analogue of the Cauchy integral formula, 

similarly to the construction of fractional powers, using only the fact that - A  

generates a strongly continuous holomorphic semigroup (see [16]). 

The operator in the previous paragraph gives us the backwards heat equation. 

The Cauchy problem for the Laplace equation may be similarly dealt with using 

C-semigroups, after the usual matrix reduction to a first order problem (see [161). 

l 
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Example 4.4: Let X and A be as in Remark 3.6. Then Y equals 

{f �9 C~([O, co) n CI(R)[ f' is bounded and uniformly continuous}, 

with [IfllY ~ supfeR If(x)[ + sup=eR [f'(x)[. 
More generally, if X - N~=0 Co k ([k, co)) with [If[I ~ E~=0 supf_>k If(k)(x)[ 

and A -- -'~z, D(A) - { f  �9 X I f '  �9 X}, then A generates a bounded strongly 

uniformly continuous (1 - A)-n-semigroup, and Y, from Theorem 3.1, equals 

C~' ([0, cr IlfllY = E~=0 sup=_>o If(k)(z)l . 
Oo k Similarly, let X -: {g �9 N~=0 C~ ([k, oo)) I Ilgll < co}, where 

Ilgll ~-sup{lg(k)(z)l] k �9 N u {o}, x �9 [k, co)}. 

Then it may be shown that A generates an f(D)-semigroup, whenever f is in 

the Schwartz space and f(D) is injective; for example, f (z)  = e - " .  In this case, 

Y would be {g �9 N~~ C0k ([0,co)) I Ilgllr < co}, where 

IlgllY = sup{Igft)(z)[[ k e N{O}, x �9 [0, co)}. 

Example 4.5: Suppose B is closed, D(B) is dense and (-oo,  O) C_ p(B), with 

(llr(r + B)-Xlll r > 0) bounded. For t > 0, let B' be the usual fractional power 

of B (see, for example, [3], [21]). Then {Bte -B�89 }t>0 is an e-B�89 (note 

that -B�89 is constructed in such a way that it generates a strongly continuous 

holomorphic semigroup e -tB�89 ) (see [14]). 

Let Y be as in Theorem 3.7. Then Y is an extension of the locally convex 

space C~176 with seminorms Ilxllk = IIB*xll, in the sense that Coo(B) C Y, 
and the topology of Y, restricted to Coo(B), is equivalent. | 

V. Fract ional  powers  of  genera to r s  of b o u n d e d  C-semigroups  

In this section, we give an example of how section III may be used to translate 

results about strongly continuous semigroups into results about C-semigroups. 

Other places where fractional powers that do not generate strongly continuous 

semigroups are considered are [41], [43], [201, [30] and [31]. 
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THEOREM 5.1: Suppose - A  generates a strongly uniformly continuous bounded 

C-semigroup. Then 3 a family of operators {A~}0<~<l such that A1 = A, Ao = I 

and 

(1) -A~ generates a bounded holomorphic C-semigroup of angle ~(1 - r), 

whenever 0 < r < 1; and 

(2) Suppose 0 < r, s < 1 and r + s < 1. Then 

C(D(A))  C_ D(ArAs) f3 D(Ar+s), 

with A~Asz = A~+sz,Vz E C(D(A));  

(3) limr--,, Arx = Asz,Vx e C(D(A)) ,  whenever 0 _< r,s < 1. 

If  p( A ) is nonempty and - A  generates a uniformly continuous bounded 12o]o- 

morph/c C-semigroup, then 

(4) (A~;) k = A, Vk E N. 

Remark 5.2: The property of generating a bounded integrated semigroup is not 

preserved by this construction. Consider the following example. Define A on 

X x X b y  

where - G  generates an exponentially decaying strongly continuous semigroup. 

Then - A  generates a bounded twice integrated semigroup and a bounded 15/.2- 

semigroup (see [15] arid [39]). Following the construction of Theorem 5.1, it is 

not hard to see that, at least for x E D(A3), 

A , z =  G�89 7G, z. 
0 G�89 

It may be shown(see [151) that, for any complex A, (A - A�89 -1 is unbounded. 

Thus -A�89 cannot generate an integrated semigroup, because P(A�89 is empty. 
| 

Proof of Theorem 5.1: Let Y be as in Theorem 3.1. Let (A[v) r be the usual 

fractional power of A[y (see, for example, [3] or [21]), so that e -t(A{v)" { }t>0 is 
a bounded strongly continuous holomorphic semigroup of angle ~(1 - r). Let 

- A t  be defined to be the generator of the bounded holomorphic C-semigroup 
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{e-t(AIv)'C},>o. (2) and (3) follow from the fact that C(D(A)) C D(Ab, ). Now 

suppose that p(A) is nonempty. Arguments identical to those in [13] imply that 

an extension of - (A})  k, -,4, generates a bounded holomorphic C-semigroup, 

hence (A];) k is closable. (2) implies that ((A}))kx = Ax,Vx �9 C(D(A)). Since 

p(A) is nonempty, this is a core for A (see [13]), thus A _C (A];) k C_ .4. Since 

p(A) is nonempty, and - .4 generates a C-semigroup, this implies that A = .4 

(see Proposition 2.5), so that A = (A}) k, as desired. I 

VI. Holomorphic interpolations and extrapolations 

It is desirable to have the analyticity of a C-semigroup preserved by interpolations 

and extrapolations. 

Definition 6.1: Se -- {rei~lr > 0, Ir < e}. m 

Definition 6.2: (see [10], [19]). The C-semigroup {W(t)}t>0 is a uniformly 

bounded holomorphic C-semigroup of angle 0 if it extends to a family of 

bounded operators {W(z)}ze-$-; satisfying 

(1) The map z ~ W(z), from So into L(X), is holomorphic. 

(2) W(z)W(w) = CW(z + w),Vz, w e S'-o. 

(3) W(z) is bounded and strongly continuous on S-00. 

We will call {W(z)} a s t rongly  uniformly continuous uniformly bounded 
holomorphic C-semigroup of angle 0 if the continuity in (3) is uniform. As 

with strongly uniformly continuous bounded C-semigroups, it is sufficient, in 

Definition 6.2, to have the generator densely defined. 

{W(t)}t>0 is a bounded holomorphic C-semigroup of angle 0 if, Vr < 8, 

{W(t)}t_>0 is a uniformly bounded holomorphic C-semigroup of angle r 

THEOREM 6.3: Suppose A generates a strongly uniformly continuous uniformly 
bounded holomorphic C-semigroup of angle 8. Then 3 a Banach space Y such 
that 

(1) Aty generates a uniformIy bounded holomorphic strongly contfnuous 

semigroup of angle 8, 

(2) [C(X)] ~ V ~ X, 

(3) W(z) = ~Al~ C, Vz �9 so. 

Y may be chosen so that Ilxllv = sup{l lC- 'W(z)xl l lz  �9 ~ } .  
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COROLLARY 6.4: Suppose A generates a strongly uniformly continuous tmi- 

formly bounded holomorphic C-semigroup, {W(z)}ze~-~, , of angle O. Then 3 

a Banach space W and an operator B such that 

(1) C extends to a bounded operator on W, 

(2) B generates a uniformly bounded holomorphic strongly continuous semi- 

group of angle O on W, such that ezBC = CeZB,Vz E ffoo, 

(3) c e ' s x  = w(z )x ,Vz  �9 �9 x ,  

(4) A = Blx  and 

(5) [c(w)] x w.  

Open Question 6.5: It is clear from Theorem 6.3 that, when D(A) is dense and 

A generates a bounded holomorphic C-semigroup of angle 0, then Vr < 0, 3 an 

interpolation space Yr on which A generates a uniformly bounded holomorphie 

strongly continuous semigroup of angle r It is not clear if there exists an inter- 

polation (Banach) space on which A generates a bounded holomorphic strongly 

continuous semigroup of angle O. | 

Open Question 6.6: Suppose A generates a strongly uniformly continuous uni- 

formly bounded holomorphic C-semigroup, I"1 is the interpolation space of Theo- 

rem 6.3 and Y2 is the interpolation space of Theorem 3.1. It is clear that Y1 C Y2. 

Are YI and }'2 equal? | 

One way to answer this open question in the negative would be to construct 

a bounded strongly continuous semigroup {e tA} such that {etAC} extends to 

a strongly uniformly continuous uniformly bounded holomorphic C-semigroup 

but {e tA} does not. It would also be sufficient to produce an operator, A, that 

generates a strongly uniformly continuous uniformly bounded holomorphic C- 

semigroup, for which (1.1) has a bounded solution that is not analytic. 

An affirmative answer to this open question would also answer Open Question 

6.5 in the affirmative, since it would then follow that Yr = Yq,2,V'kx,r < 0. 
| 

Except for the following lemma, most of the proof of Theorem 6.3 is identical 

to the proof of Theorem 3.1. 

LEMMA 6.7: Suppose A generates a uniformly bounded holomorphic 
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C-se~group, {W(z)}zE~s of angle O. Then, Vy q S#, 

sup II ~ [W(w + z) - W(w)] - AW(w)ll 
wE~s+y z 

converges to zero, as Izl goes to zero. 

One might call this being u n i f o r m l y  ana ly t ic  on  subsec to r s .  

Proof." Let M = sup,e~{llW(z)ll}. For fixed z, let r = arg(z). Then, for Izl 

sufficiently small, 

su~ 11�88 [W(w + z) - W(w)] - AW(w)l I 
wESs+y 

1 f l ' l  
< sup I l i~ / A W ( s e i §  

< sup sup 
,,,e~+z, 0<,<ld 

IIAW(sd § + w) - AW(w)II 

= sup sup II A2W(re~+~)drll 
~e~+u 0<,<1.1 

< sup sup IzlllA2W(r + w)ll 
.,,r I.'1<1,1 

M Mlzl 
< sup sup Izllr + wl -------z < w~s,-+, M_<t,I - (Ivl - Izl) 2" 

It is clear that this converges to zero, as ]z I converges to zero . The second to 

last inequality in the argument above follows from the Cauchy integral formula 

for derivatives of functions holomorphic in a sector, as with strongly continuous 

holomorphic semigroups. II 

Proof  of Theorem 6.3: Let Y be the set of all z such that IJzllr is finite and 

the map w ~ C-ZW(w)z is a uniformly continuous map from ~ into X, and a 

uniformly analytic map from subsectors of S0 into X, that is, for all y E So, 

su___p I1~ [ c - 1 w ( w  + z)z - c-~w(w)z]  - c - ~ W ' ( w ) z l l  
wESo+y 

converges to zero, as Iz[ goes to zero. 

Then the same arguments as in the proof of Theorem 3.1 imply that Y is 

a Banach space and AIy generates a uniformly bounded strongly continuous 
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holomorphic semigroup of angle 8, T(z) - C -1W(z). As in the proof of Theorem 

3.1, Lemma 6.7 implies that [C(X)] ~ Y. | 

VII. Perturbations of generators of C-semigroups 

We will write (A + B) to mean the operator with domain D(A) N D(B). The 

natural setting for perturbations is a noncommuting version of C-semigroups, 

introduced in [17]. 

Definition 7.1: The strongly continuous family of bounded operators {W(t)}t>0 

is an exponent ia l ly  b o u n d e d  mild C-existence family for A if A is closable 

and 3w > 0 such that 

(1) IIw(t)ll is o (~ , ) ,  

(2) (r - A )  is injective, Vr > w, 

(3) Im(C) C_ Im(r - A),Vr > w, 

(4) The map t ~ f :  W(s)x ds s C ([0, oo), [D(A)]),Vx �9 X, 

(5) IIA (f~W(s)zds) II is O(eWt),Vz �9 X,  and 

[ (r - A ) - l C x  = ~ - " W ( t ) x d t ,  Vz  �9 X ,  r > w. 

| 

The following may be found in [17]. 

PROPOSITION 7.2: Suppose 3 an exponentially bounded mild C-existence family 

for a restriction of A. Then (1.1) has a unique exponentiM1y bounded mild 

sdution, Vx �9 Ira(C). 

THEOREM 7.3: Suppose 

(1) A generates a bounded uniformly continuous Cl-semigroup {W(t)}t>0 

that commutes with C2, 

(2) C~-~C2 �9 L(X),  

(3) B is dosed in X and 

(4) Z = {xlt  ~ C;aW(t)z  is a bounded uniformly continuous map from 

[0,oo) into X}  c_ D(B), with t ~ C ~ W ( t ) B x  bounded and uniformly 

continuous, Vz �9 Z. 
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Then ] a bounded mild C2-existence family for a restriction of(A + B). 

What is of interest here is that B could be unbounded, even relative to A. 

Consider the following example. 

Example 7.4: Suppose G generates a bounded strongly continuous group, 

{T(t)}t>o, on X, B is closed in X, r E p(G) and D(G") C_ D(B). Define A, 

on X x X, by 

A =- [ GO ~ ] ' D(A) = D(G) x D(G)" 

Let 
0 

Then Theorem 7.3 may be used to show that 3 a bounded mild C2-existence 

family for 

[0 
since 

0 
whenever x2 E D(G"). | 

As a corollary of Theorem 7.3, we get the best perturbation result for C- 

semigroups currently known (see [17], [47] or [20]). 

COROLLARY 7.5: Suppose B E L(X, [C(X)]) and A generates a bounded uni- 
formly continuous C-semigroup. Then 3 a bounded miJd C-existence [amily for 

a restriction of (A + B). 

Proof of Theorem 7.3: Let Y be as in Theorem 3.1. Then Z = [C~'C2(Y)]. 
Since C2 commutes with W(t), it commutes with etA1 Y, thus AIz also generates 

a strongly continuous contraction semigroup. Since Z '--* X, B is closed in Z. 

Thus, by (4) and the Closed Graph Theorem, BIz E L(Z). This implies that 

(AIz + BIz ) generates a strongly continuous contraction semigroup {T(t)}t>_o, 
on Z. It is well-known that (0, oo) C p(A[z + B[z), with 

~ o o  

( s  - (AIz + BIz))- lx  = e-*tT(t)xdt, 
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Vs > 0,z E Z. Since [C2(X)] ~ Z, this implies that, if W(t) = T(t)C2, then 

(s - (Aiz + BIz))-1C~z = e-"W(t)zdt,  

Vs > 0, z 6 X.  Since ]~ W(s)z ds = fo T(s)C2z ds 6 D(AIz),  with 

(Alz + B,z) = 

W(t) satisfies (4) • d  (5) of Definition 7.1. Thus {W(t)}t>o is a bounded mild 
C2-existenee family for (AIz + BIz), a restriction of (A + B). II 

Proof of Corollary 7.& C-1B E L(X), thus W(t)Bz  E Im(C),Vt > O,z E X, 
with C-IW(t)Bz = W(t)C-IBz,Vt >_ O, so that this follows from Theorem 7.3, 

with C~ = C2 = C. It 
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